Ballistic flights and random diffusion as building blocks for Hamiltonian kinetics.
نویسندگان
چکیده
We propose a kinetic approach to transport in Hamiltonian systems with a mixed phase space. The approach is based on the decomposition of the dynamical picture into two contributions: (a) ballistic flights, and (b) random diffusion. The kinetic scheme leads to a stochastic process with statistical properties which are similar to those produced by the original Hamiltonian. We show that our approach helps in obtaining an insight into several properties of Hamiltonian kinetics such as anomalous diffusion, chaos-assisted population exchange, and current rectification. In particular, the chaos-assisted exchange offers a classical counterpart for the recently reported chaos-assisted tunneling.
منابع مشابه
Stochastic description of the dynamics of a random-exchange Heisenberg chain
We study the diffusion process in a Heisenberg chain with correlated spatial disorder, characterized by a power spectrum in the momentum space behaving as k−β, using a stochastic description. We establish a direct connection between the fluctuations in the spin-wave density of states and the noise density of states. For continuous ranges of the exponent β, we find super-diffusive and ballistic ...
متن کاملThe Symmetric Stable Lévy Flights and the Feynman Path Integral
We determine the solution of the fractional spatial diffusion equation in n-dimensional Euclidean space for a “free” particle by computing the corresponding propagator. We employ both the Hamiltonian and Lagrangian approaches which produce exact results for the case of jumps governed by symmetric stable Lévy flights.
متن کاملEvolution of wave packets in quasi-1D and 1D random media: diffusion versus localization
We study numerically the evolution of wavepackets in quasi one-dimensional random systems described by a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling properties of the width of packets in three time regimes: ballistic, diffusive and localized. Particular attention is given to the fluctuations of packet widths in both the diffusive and loca...
متن کاملRandom deposition model with friction: Equivalent to ballistic deposition without lateral growth
The Random Deposition model is the simplest model for surface growth, where there is no correlation between the neighbor sites of the lattice. In the Ballistic deposition model, the particles stick to the first neighbor particle; thus it is used to describe the deposition of the sticky particles. However, in many true-life phenomena involving surface growth, there is no adhesion. Instead, the f...
متن کاملDiffusions in random environment and ballistic behaviour
In this thesis, we study continuous diffusions in random environment on Rd . The randomness in the environment is incorporated in the diffusion matrix and the drift term that are stationary random variables. Once the environment is chosen, it remains fixed in time, and the diffusion evolving in this frozen environment is a Markov process. To restore some stationarity, it is common to average bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2002